335 research outputs found

    Lynden-Bell and Tsallis distributions for the HMF model

    Full text link
    Systems with long-range interactions can reach a Quasi Stationary State (QSS) as a result of a violent collisionless relaxation. If the system mixes well (ergodicity), the QSS can be predicted by the statistical theory of Lynden-Bell (1967) based on the Vlasov equation. When the initial distribution takes only two values, the Lynden-Bell distribution is similar to the Fermi-Dirac statistics. Such distributions have recently been observed in direct numerical simulations of the HMF model (Antoniazzi et al. 2006). In this paper, we determine the caloric curve corresponding to the Lynden-Bell statistics in relation with the HMF model and analyze the dynamical and thermodynamical stability of spatially homogeneous solutions by using two general criteria previously introduced in the literature. We express the critical energy and the critical temperature as a function of a degeneracy parameter fixed by the initial condition. Below these critical values, the homogeneous Lynden-Bell distribution is not a maximum entropy state but an unstable saddle point. We apply these results to the situation considered by Antoniazzi et al. For a given energy, we find a critical initial magnetization above which the homogeneous Lynden-Bell distribution ceases to be a maximum entropy state, contrary to the claim of these authors. For an energy U=0.69, this transition occurs above an initial magnetization M_{x}=0.897. In that case, the system should reach an inhomogeneous Lynden-Bell distribution (most mixed) or an incompletely mixed state (possibly fitted by a Tsallis distribution). Thus, our theoretical study proves that the dynamics is different for small and large initial magnetizations, in agreement with numerical results of Pluchino et al. (2004). This new dynamical phase transition may reconcile the two communities

    Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions

    Full text link
    We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. Our formula generalizes the usual Einstein relation for a free Brownian motion to the context of two-dimensional gravity. We show the existence of a critical temperature T_{c} at which the diffusion coefficient vanishes. For T<T_{c} the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature T_{c} is different from the collapse temperature T_{*} at which the partition function diverges. These quantities differ by a factor 1-1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N=2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of ``atoms'' in a two-dimensional (2D) plasma and the formation of dipoles or supervortices in 2D point vortex dynamics

    Curious behaviour of the diffusion coefficient and friction force for the strongly inhomogeneous HMF model

    Full text link
    We present first elements of kinetic theory appropriate to the inhomogeneous phase of the HMF model. In particular, we investigate the case of strongly inhomogeneous distributions for T0T\to 0 and exhibit curious behaviour of the force auto-correlation function and friction coefficient. The temporal correlation function of the force has an oscillatory behaviour which averages to zero over a period. By contrast, the effects of friction accumulate with time and the friction coefficient does not satisfy the Einstein relation. On the contrary, it presents the peculiarity to increase linearly with time. Motivated by this result, we provide analytical solutions of a simplified kinetic equation with a time dependent friction. Analogies with self-gravitating systems and other systems with long-range interactions are also mentioned

    Relaxation of a test particle in systems with long-range interactions: diffusion coefficient and dynamical friction

    Full text link
    We study the relaxation of a test particle immersed in a bath of field particles interacting via weak long-range forces. To order 1/N in the N+N\to +\infty limit, the velocity distribution of the test particle satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in plasma physics. We provide explict expressions for the diffusion coefficient and friction force in the case where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space d=3,2d=3,2 and 1 (ii) a discret spectrum of masses among the particles (iii) different distributions of the bath including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems in two dimensions and for the HMF model in one dimension

    Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations

    Full text link
    We develop the kinetic theory of point vortices in two-dimensional hydrodynamics and illustrate the main results of the theory with numerical simulations. We first consider the evolution of the system "as a whole" and show that the evolution of the vorticity profile is due to resonances between different orbits of the point vortices. The evolution stops when the profile of angular velocity becomes monotonic even if the system has not reached the statistical equilibrium state (Boltzmann distribution). In that case, the system remains blocked in a sort of metastable state with a non standard distribution. We also study the relaxation of a test vortex in a steady bath of field vortices. The relaxation of the test vortex is described by a Fokker-Planck equation involving a diffusion term and a drift term. The diffusion coefficient, which is proportional to the density of field vortices and inversely proportional to the shear, usually decreases rapidly with the distance. The drift is proportional to the gradient of the density profile of the field vortices and is connected to the diffusion coefficient by a generalized Einstein relation. We study the evolution of the tail of the distribution function of the test vortex and show that it has a front structure. We also study how the temporal auto-correlation function of the position of the test vortex decreases with time and find that it usually exhibits an algebraic behavior with an exponent that we compute analytically. We mention analogies with other systems with long-range interactions

    Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes

    Full text link
    We complete our previous investigation concerning the structure and the stability of "isothermal" spheres in general relativity. This concerns objects that are described by a linear equation of state P=qϵP=q\epsilon so that the pressure is proportional to the energy density. In the Newtonian limit q0q\to 0, this returns the classical isothermal equation of state. We consider specifically a self-gravitating radiation (q=1/3), the core of neutron stars (q=1/3) and a gas of baryons interacting through a vector meson field (q=1). We study how the thermodynamical parameters scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars, we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy as a function of the central density present damped oscillations. We give the critical value of the central density, corresponding to the first mass peak, above which the series of equilibria becomes unstable. Finally, we extend our results to d-dimensional spheres. We show that the oscillations of mass versus central density disappear above a critical dimension d_{crit}(q). For Newtonian isothermal stars (q=0) we recover the critical dimension d_{crit}=10. For the stiffest stars (q=1) we find d_{crit}=9 and for a self-gravitating radiation (q=1/d) we find d_{crit}=9.96404372... very close to 10. Finally, we give analytical solutions of relativistic isothermal spheres in 2D gravity.Comment: A minor mistake in calculation has been corrected in the second version (v2

    Gravitational instability of isothermal and polytropic spheres

    Get PDF
    We complete previous investigations on the thermodynamics of self-gravitating systems by studying the grand canonical, grand microcanonical and isobaric ensembles. We also discuss the stability of polytropic spheres in the light of a generalized thermodynamics proposed by Tsallis. We determine in each case the onset of gravitational instability by analytical methods and graphical constructions in the Milne plane. We also discuss the relation between dynamical and thermodynamical stability of stellar systems and gaseous spheres. Our study provides an aesthetic and simple approach to this otherwise complicated subject.Comment: Submitted to A&

    Gravitational instability of slowly rotating isothermal spheres

    Get PDF
    We discuss the statistical mechanics of rotating self-gravitating systems by allowing properly for the conservation of angular momentum. We study analytically the case of slowly rotating isothermal spheres by expanding the solutions of the Boltzmann-Poisson equation in a series of Legendre polynomials, adapting the procedure introduced by Chandrasekhar (1933) for distorted polytropes. We show how the classical spiral of Lynden-Bell & Wood (1967) in the temperature-energy plane is deformed by rotation. We find that gravitational instability occurs sooner in the microcanonical ensemble and later in the canonical ensemble. According to standard turning point arguments, the onset of the collapse coincides with the minimum energy or minimum temperature state in the series of equilibria. Interestingly, it happens to be close to the point of maximum flattening. We determine analytically the generalization of the singular isothermal solution to the case of a slowly rotating configuration. We also consider slowly rotating configurations of the self-gravitating Fermi gas at non zero temperature.Comment: Submitted to A&
    corecore